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An alternative computational adaptive method to solve the Leslie-Ericksen equations of nematic
hydrodynamics is presented. The method uses adaptive torque balances and is able to accurately
compute arbitrary three-dimensional orientation fields. The method is applied, in conjunction with
computational bifurcation methods, to solve the governing equations for a model rigid-rod, non-
aligning, nematic polymer, in steady and transient rectilinear simple shear flows, using fixed parallel
director anchoring. The five-component solution vector consists of the primary and secondary ve-
locity components and the three-dimensional director field n. The parameter space is the line
representing the magnitudes of the Ericksen number (£). According to the magnitude of £, seven
types of stable steady-state solutions are found and fully characterized. The seven types of so-
lutions are classified as in-plane solutions if the director remains within the shear plane, defined
by the flow direction and the velocity gradient, and as out-of-plane (OP) solutions if the director
field is out of the shear plane (three-dimensional orientation). The six OP solutions are three pairs
of mirror-image solutions that differ from each other by their rotation number (A). Two pairs of
out-of-plane solution branches are achiral (A = 0) and display one-way twisting from the shear
plane. One pair of out-of-shear-plane solution branches is chiral (A = +1) and displays a full 2=
director rotation when going from the bottom plate to the top plate. The nucleation mechanisms of
these chiral branches are identified using a torque analysis. The main bifurcation phenomena and
the local stability of the branches are summarized in a bifurcation diagram. The main structural
changes, as the parameter £ increases, are captured by visualization of the transient director field.
The main features of the velocity field are captured by particle tracking visualization, which yields
three-dimensional particle motions driven by the combined primary and secondary flows. The main
mechanical responses, captured by the transient rheological functions (apparent viscosity and the
first normal stress differences) exhibit, at low shear rates, non-Newtonian responses that are usually
found in isotropic, viscous, or viscoelastic liquids, at large shear rates. Dynamic simulation in con-
junction with the bifurcation diagram is used to construct the stability phase diagram, which yields
the adopted stable steady-state solution that results from shearing a monodomain sample with fixed
parallel director anchoring. Finally, the strain history is shown to control the finally adopted steady

JANUARY 1994

state, thus invalidating linear superposition which is usually valid at small shear rates.

PACS number(s): 64.70.Md, 47.20.Ft, 02.70.—c, 47.50.+d

I. INTRODUCTION

The macroscopic description of dynamical phenomena
of nematic liquid crystals requires the specification of the
velocity field v(x,t), the pressure field p(x,t), and, at
least, the tensor order parameter field Q(x,t), which is
a symmetric traceless second order tensor [1]. In some
cases, the eigenvalues of Q can be taken to be constant
and the dynamics of the microstructure of the orienta-
tionally ordered viscoelastic rigid rod nematics may be
captured by variations in a single eigenvector of Q, usu-
ally called the director n(x,t). A situation of practical
interest, in which the assumption is valid, is the simple
shear creeping flow of rigid rod, uniaxial, thermotropic
(lyotropic) nematic polymers at temperatures (concen-
trations) corresponding to their full nematic state, which
is captured by the director theory of Leslie and Ericksen
(LE) [2]. A distinguishing feature of rigid rodlike nematic
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polymers, as compared to low molar mass nematics, is
the strong anisotropy in their viscoelastic constants, usu-
ally characterized by the three elastic constants of splay
(K11), twist (K32), and bend (K33), and the six Leslie co-
efficients {a;}, 1=1,2,...,6. These anisotropies are known
[3] to cause a wide variety of pattern-formation phenom-
ena in field-induced transitions. Field-induced pattern-
formation phenomena in nematic polymer systems in-
clude periodic banding and stripe formations [4-8]; agree-
ments between the LE theoretical predictions and experi-
mental results have been reported for pattern formations
in the presence of magnetic fields [8,9] and shear flows
[10]. In this paper we present the results of a numeri-
cal study, using the full LE theory, of shear-flow-induced
transitions in nematic polymers, which also predict a rich
variety of pattern formation phenomena.

A fundamental rheological property of nematics is
whether or not they align in the direction of flow dur-
ing a shearing motion. The LE theory is able to describe
both types of behavior. For low molar mass nematics,
a transition from aligning to nonaligning modes is usu-
ally experimentally observed whenever a thermotropic
nematic is brought to a temperature approaching that
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of the nematic-smectic transition [11,12]. On the other
hand, it is generally agreed that many nematic polymers
do not flow align in shear [13]. The single parameter that
controls the orienting behavior during shear flow is the
tumbling or reactive parameter A [2]. A classification of
shear-flow-orienting behavior for low molar mass uniaxial
liquid crystal has been given by Carlsson [14]. Briefly, for
rigid-rod-like nematics, if A > 1, the director aligns close
to the shear-flow direction, while for discotic nematics,
if A < —1, the director aligns close to the normal to the
shear-flow direction, in both cases within the shear plane
defined by the flow direction and the velocity gradient.
On the other hand, if 0 < A < 1 (=1 < X < 1), rodlike
(discotic) nematics do not flow align in shear, meaning
that there is no particular orientation at which the vis-
cous torque arising from the combined effects of vorticity
and strain cancel each other. The corresponding classi-
fication of flow orienting behavior for nematic polymeric
liquids has been given by Farhoudi and Rey [15]. Briefly,
if the effect of flow on the scalar order parameter S is
taken into account, the tumbling parameter A for low
molar mass uniaxial nematic liquid crystals becomes the
tumbling function A(S) for uniaxial nematic polymers.
The rheological behavior is now sensitive to the shear
rate magnitude, and a rich variety of nonlinear dynamical
features arises from the possible shear-induced aligning-
nonaligning transitions. Experimental data seem to in-
dicate [16-18] that for sufficiently small shear rates, the
assumption that A is a constant and less than one should
be adequate to describe the slow dynamical behavior of
nonaligning, rigid-rod, uniaxial nematic polymers.

The details of the orienting behavior of nematic poly-
mers at low shear rates are at present not clearly under-
stood, although the following rheo-optical experiments
indicate the following: (i) During shear start-up flows
of PBT (poly 1,4-phenylene-2, 6-benzobisthiazole) [19]
with controlled surface orientation and of PBG (poly-
benzyl-glutamate) without controlled surface orientation
[20], there are long-lasting light transmission fluctuations
whose exact origin is not yet known. (ii) Conoscopic
studies of shear start-up flows of monodomain PBT, us-
ing controlled surface orientation, show that initially the
angle between optic axis (director) and the flow direc-
tor is negative, and that for sufficiently large strains the
director escapes the plane of shear [19,21]. For some con-
ditions it is reported that director fields displays twisted
out-of-plane surface layers with an almost in-plane orien-
tation at the midgap region [19]. (iii) Conoscopic studies
of aligned and nonaligned melts of a main chain ther-
motropic nematic polyester, subjected to shearing flow,
show that the director is of the aligning type close to the
nematic-isotropic transition temperature and of the non-
aligning type close to the smectic-nematic phase transi-
tion [22]. (iv) Two types of shear-induced pattern for-
mations, band or stripe, were experimentally observed
without controlled surface orientations and were charac-
terized as a function of initial orientation and the Debo-
rah and Ericksen numbers [6,7].

The main results of previous numerical studies of var-
ious shear flows of nonaligning nematics, using the LE
equations of nematodynamics, that have explored the in-

plane (IP) to out-of-plane (OP) flow-induced orientation
instabilities and transitions are as follows: (i) Zuniga and
Leslie [23] show, using the parameter values of 8CBP (4-
n-octyl-4’-cyanobiphenyl), parallel and homeotropic fixed
director wall anchorings, spatially one-dimensional solu-
tions, and linear stability analysis, that the LE equations
predict that the two-dimensional in-plane orientation be-
comes unstable to three-dimensional infinitesimal pertur-
bations, at a critical value of the Ericksen number &.,.
which is generally lower than the one corresponding to
in-plane tumbling instability £, in agreement with the
experiments [24]. The only exception to the ordering
Eo < & occurs when using a particular set of mate-
rial parameters and homeotropic anchoring, in which case
E.o is slightly greater than &.;, but nevertheless this case
eventually leads to further instabilities. (ii) The same
critical Ericksen number ordering (€., < &) results
were obtained for the Taylor-Couette flow of 8CBP with
homeotropic wall anchoring [25]. The only exception for
the Taylor-Couette flow is that there is some small in-
terval of £ values for which there is a stable IP solution
branch even if £ < &.,. (iii) Luskin and Pan [26] show.
using the parameter values of 8CBP and parallel fixed
director wall anchoring, that the LE equations predict
steady out-of-plane solutions, whenever £ > &.,: cases
for which &, < &., were obtained for certain parame-
ter values. (iv) Han and Rey used numerical bifurcation
methods and the same material constants as Zuniga and
Leslie [23] and confirmed that £, < & for all the param-
eter sets and director anchoring conditions. They found
that there are stable steady state out-of-plane orientation
solution branches, that bifurcate supercritically, from the
in-plane solution branch [27]. Their transient simulation
results show long lasting director fluctuations and under-
damped oscillations of the rheological functions [28]. For
a nematic polymer, they showed that the IP-OP orienta-
tional transition can be either supercritical, subcritical.
or tricritical, depending on the surface orientation and
on the anisotropy of the Frank elastic constants [29]. A
detailed comparison between these numerical simulations
is available in [28].

The objectives of this paper are (i) to present a nu-
merical scheme that allows for the solution of LE equa-
tions of nematodynamics for arbitrary director fields, (ii)
to present results of a numerical study of the rectilinear
creeping shear flow of a nonaligning nematic polymer for
values of the Ericksen number considerably higher than
those associated with the IP-OP orientational transition
previously considered, and (iil) to characterize and vi-
sualize the associated nonlinear flow phenomena such as
bifurcations, multistability, secondary flows, and history
dependence.

The organization of this paper is as follows. Section
II presents the governing equations, numerical methods.
and input data. Section ITI presents the bifurcation di-
agram. the orientational instabilities, the characteristic
velocity and director fields, particle tracking and direc-
tor dynamic visualizations, the phase stability diagram.
a study of relaxation and flow reversal phenomena, and a
characterization of the history dependence of the adopted
stable steady states. Finally, conclusions are given.
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II. THEORY AND NUMERICAL METHODS
A. The Leslie-Ericksen equations

The Leslie-Ericksen theory consists of the linear mo-
mentum balance, director torque balance, and consti-
tutive equations for the stresses, viscous, and elastic
torques [2]. The linear momentum balance is

ov=Ff+V.o, (1)

where p, v, f, and o are the density, velocity, body force
per unit volume, and total stress, respectively. The su-
perposed dot signifies the material time derivative. The
constitutive equation for the total stress tensor o is

OF
= pb— —— W :
o po (@Vn)T n+ o;(nn: A)nn + aznN
+azNn+ asA +asnn- A + agA -nn, (2)

where p, 8, a; (i = 1,...,6), A, and N are the pressure,
unit tensor, Leslie viscosity coefficients, rate of deforma-
tion tensor, and corrotational time derivative of n, re-
spectively. The last two quantities are given by

2A = [Vv + (Vv)T], (3)

N=n-w-n, (4)
where the rate of rotation tensor w is
2w = [Vv — (Vv)T]. (5)

The Frank orientation curvature elastic energy F' is given

by

2F = K;1(V -n)® 4+ Ka3(n - V xn)?
+K33 | n x Vxn |2 , (6)

where K11, K22, and K33 are the splay, twist, and bend
constants, respectively. The director torque balance is
given by

0=TV+4T° (7)
The unit length director condition is

l1=n-n. (8)

The viscous torque I'” and the elastic torque I'®, in the
fixed Cartesian coordinate system (z,y, z), are given by

I'" = —nx(11N + 7v2A - n), (9)
e oF oF
Ie= nx(an v —————a(vn)T) , (10)

where v; and v, are the rotational and irrotational vis-
cosities given by

"1 = a3 — az, (11)

599

FIG. 1. Schematic of simple shear flow and definition of
fixed coordinate system (z,y, z).

Y2 = Qg — Q5. (12)

Figure 1 shows the flow geometry. A typical non-
aligning nematic polymer (PBG) is placed between two
parallel plates separated by a distance h. The upper
plate is moving toward the positive = axis parallel to the
primary velocity v, with a speed U. The y axis is nor-
mal to the plate surface and the z axis is parallel to the
secondary velocity v,. The z-y shear plane is defined by
the velocity gradient direction (y) and the flow direction
(z). Whenever n, = 0 the orientation is denoted as IP
(in-shear plane), and whenever n, # 0 it is denoted as
OP (out-of-shear plane).

B. Adaptive torque balances

In this paper we present results using adaptive torque
balances, similar to our previously formulated gyroscopic
torque balance [29]. The adaptive orthogonal triad (m,
g1, g2) is defined by the director n and the two gyrators
g1 and g2; the relationships between n, g;, and g; with
respect to the fixed Cartesian coordinate system (z,y, 2)
are shown in Fig. 2. The torque balances have their
axes of rotations collinear with the gyrators g; and gs.
The gyrators and the director define an unknown rotating
orthogonal coordinate system that satisfy the following
two equations:

nxgj}
8 = flaxgi]l Bi=gxn, (1)

where g} denotes the known value of g, at the previously

FIG. 2. Relationships between the two rectangular coor-
dinate systems of (n,g1,g2) and (z,y,z) and the spherical
coordinate system (r=1,¢,0); ¢ is the twist angle and 6 is the
tilt angle.
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converged computation step. The transformation tensor
T, which maps (z,y, z) into (n, g1, g2), is given by

I’l'il l’l'iz n~i3
g1-iy g1-iz g1-iz |, (14)
g2-i1 g2-iz2 g2-1i3

T =

where i; = (1,0,0), i = (0,1,0), and i3 = (0,0,1). The
fixed torque set (I'*,T¢), given by Eqgs. (9) and (10),
is transformed into the adaptive torque set (I'V*,T'“*) as
follows:

I = —(T-n) x [T (1N +~:A -n)], (15)

e o ()]} o

Then the corresponding adaptive torque balance equa-
tion becomes

0=T"" 4T, (17)

The full equations are listed in the Appendix.

The principal feature of this formulation is the au-
tomatic selection of the two adaptive orthogonal gyra-
tors (g1, g2) as the torque axes; since the director is
always orthogonal to (g1, g2), the two necessary and suf-
ficient torque balance equations are always linearly in-
dependent. The orthogonal adaptive triad is space and
time dependent since it satisfies Eq. (17) and the mu-
tual orthogonality between gi(y,t), g2(y,t), and n(y,t).
This spatiotemporal adaptation is smooth and contin-
uous, as shown in Fig. 3 for a typical simulation
[£=466.9, nywan=(1,0,0); the corresponding shear strains
(y = Ut/h) are A=0.0, B=78.36, C=87.34, and D=252.9

FIG. 3. Evolution of the adaptive torque triad (n, g1, g2)
for simple shear start-up flow (£=466.9), shown as deforming
ribbons. The thick backbone line is tangential to g, and the
thin side lines denote n. The filled triangles indicate the cen-
terline position on the deforming ribbon. The corresponding
strains « for each column are A=0.0, B=78.36, C=87.34, and
D=252.9 (steady state).

(steady state)]. The space curves traced by the tips of
the director and by the tangent (thick backbone line) to
g; define a ribbon, whose contour length is equal to the
gap thickness; the thin line segments normal to the thick
backbone line denote the director. The figure shows how
the initial (A) orthogonal torque triad continuously de-
forms as the steady state (D) is reached; at each strain
the filled triangle at the centerline (y = h/2) serves to
indicate the y coordinate on the spatially deforming rib-
bon.

Figure 4 shows a representative visualization of the
director dynamics n(y,t) across the thickness direction
(y) for £=466.9, using the fixed torque balance equation
(7); each column corresponds to the following strains:
A4=54.68, B=76.16, C=78.34, D=79.94, F=81.51, and
F=89.15. The figure shows that the initially homoge-
neous director field (column A) evolves into a profile con-
taining boundary singularities (column F') that eventu-
ally lead to computation breakdown. The cause of the
breakdown is identified in column C', which shows that
at this strain (y = 78.34), the director is oriented along
the flow direction (z) close to the bounding surface, but
is aligned along the velocity gradient (y) in the center-
line region. The major advantage of using the adaptive
method over a fixed torque balance methods are (i) im-
proved accuracy due to the exact orthogonality between
n, gi, and gy, and (ii) robust computational stability
also due to the exact orthogonality. In addition to these
advantages it turns out that for some complex orienta-
tion dynamics a fixed torque triad may break down due
to numerical ill conditioning or linear dependence of the
equations.

The Ericksen number £ defines the parameter space
studied in this paper and is given by

£ = -&_iﬁ_z_)iu_l . (18)
(K11 K22K33) 3

The Reynolds number Re is defined as

Re € 22233)° (19)
vy (g — o)y

ST -]
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i
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Z

FIG. 4. Three-dimensional visualization of the director
evolution leading to computational breakdown (fixed torque
formulation). This figure shows the result of linear depen-
dence or ill conditioning of the governing equations when us-
ing fixed torque balances: Column F shows a pair of surface
singularities. Each column represents the following strains :
A=54.68, B=76.16, C=78.34, D=79.94, E=81.51, F=89.15,
and the Ericksen number is £=466.9.
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where a4 was used as a characteristic viscosity. A typical
Reynolds number for the presented simulations is 5x10~7
(£=300). All transient results are shown as a function of
the nominal strain -, defined by

Y = Yat, (20)

where 4, = U/h is the nominal shear rate and U is the
upper plate velocity. We note that the actual shear rate
[¥(y,t,€)] is not taken to be a given constant but is a
computed function of time and space. Typical nominal
shear rates for the simulations are of the order of 1073
sec™ 1. For the values used here the relation between the
nominal shear strain rate 4,, and the Ericksen number is
¥n = 1.055 x 1073€.

The initial condition used throughout this paper are
(i) v(0,y)=0, y € [0,h] (no slip at the walls) and (ii)
n(0,y)=(1+ Eza€y762)[(1 + 62)2 + CZ + 63]_% W € [07 h]
(monodomain, randomly perturbed, alignment), where
the magnitude of the random perturbations are restricted
to ||ez||l1 = ||eyll1 = |lez|l1 = 1072. The boundary con-
ditions are (i) v(¢,0)=v(t,h)=0, t € R* (no flow) and
(ii) n(¢,0)=n(t, h)=n,,=(1,0,0), t€ R* (fixed parallel an-
choring).

The set of experimentally measured material constants
for PBG [8], used in this paper, is shown in Table I. The
gap width h is 3.5 x 10™* m, and the density p used in
the dynamic simulation is 10% kg/m?3.

The model output is the solution vector that, for
the dynamic simulations, consists of the velocity field
v(y,t) = (vz(y,t),0,v.(y,t)) and the director field
n(y,t) = (nz(y,t), ny(y,t),n.(y,t)), and for the
steady states v(y) = (vz(y),0,v.(y)) and n(y) =
(n=(y),ny(y), nz(y))-

In this work, the Galerkin finite-element method [30]
with second order fully implicit time. marching scheme,
standard computational bifurcation methods [31], and
the Newton-Raphson iteration method were used to con-
struct the bifurcation diagrams and transient calcula-
tions. We used 200 linear elements, enforce the same
accuracy on the numerical results, and employ the same
convergence criteria as in [28]. All the equation ma-
nipulations used to obtain component equations, their
Galerkin form, and Jacobians, are carried out using
MATHEMATICA [32].

TABLE 1. The Leslie viscosity coeflicients and the Frank
elastic constants for poly-y-benzyl-glutamate [7].

A 0.9948
a; (Pas) -3.66
Qa2 -6.92
as 0.018
a4 0.348
Qs 6.61
ag -0.292
Ki; (107 N) 1.21
K2 0.078
K3ss 0.763

III. RESULTS AND DISCUSSION

A. Bifurcation analysis

Table II presents a definition of the terminology, sym-
bols, and the main characteristics of the seven stationary
solution branches discussed in the rest of this paper. The
seven solution branches are classified according to their
orientation dimensions, their chirality, the rotation num-
ber A or number of turns the director performs while
going from the bottom plate to top plate, their orienta-
tion with respect to the shear plane, the maximum twist
angle ¢, and the symmetry of the secondary velocity field
v,(y)- The four achiral out-of-plane OPN+ and OPS+
solutions may have one way left (—) or right (+) twist,
where N means that the maximum out-of-plane angle
|| max is always less than 7 /2 radians and S means that
|| max is always less than 7 radians. The two chiral out-
of-plane OPC# solutions may be left (=) or right (+)
handed. The computed nonequilibrium chiral solutions
have rotation numbers A = +1, and the director rotates
by 27 rad when going from the bottom surface to the top
surface; these solutions are similar to the equilibrium so-
lutions of a cholesteric whose pitch is equal to the gap
thickness. In the rest of this paper we only show all the
(+) solution branches except where explicitly mentioned.
A visualization of four (IP, OPN+, OPS+, OPC+) sta-
tionary solution types is shown in the last row of Table
1I.

We establish the bifurcation phenomena involved in
branch switching and the parametric dependence of the
four stationary branches discussed in this paper by con-
structing the bifurcation diagram [31,33,34]; the appro-
priate solution measures that capture the nonlinear phe-
nomena are the centerline director components.

Figure 5 shows the bifurcation diagram in the three-
dimensional space defined by (ng centers €,z center), fOr

0.0

1y

. Dx,center

FIG. 5. Bifurcation diagram for the in-plane (IP) and
out-of-plane (OP) orientation modes, for parallel anchoring,
in three-dimensional space (nz center, Mz,center, £). The solid
lines are in the three-dimensional space. The dotted lines
represent the orthogonal projections of the solid lines onto
the zero tilt plane (bottom side of the box) and the zero
twist plane (rear side of the box). The symbol A indicates
the supercritical bifurcation point (.o = 148.6) between IP
and OPN branches. The symbol B indicates the transcriti-
cal bifurcation points (£:rs = 159.1) between OPN and OPS
branches.
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all the (+) and (—) branches. The solid lines are
space curves, while the dotted lines are the projections
of the solid lines onto (ng center = —1,&,7; center) and
(Ng,centers £, Mz center = —1) planes. As described above,
we find seven steady state solution branches, one in-
shear-plane solution branch denoted as IP and three
out-of-shear-plane solution branches denoted as OPN+
(twistable nematic), OPS+ (super-twistable nematic),
and OPC= (chiral nematic). The OPN+ and OPS# are
differentiated by their maximum twist angle: |@|max =
w/2 rad is the maximum twist angle for the OPN+
branches, but |¢|max can exceed 7/2 rad for the OPS+
branches. The OPN% branches emanates from a super-
critical bifurcation at the point A(€.,=148.6) on the IP
solution branch, as shown in Fig. 5.

The bifurcation phenomena involving the various sta-
tionary solutions and the parametric ranges of multista-
bility can be established by direct observation of Fig. 5;
local stability was also confirmed by transient dynamic
simulations. Figure 5 shows that the parametric space is
divided into four representative regions:

R]Z 0< €& gtuagtu = 1295,

Ra: &ty < € < Eeo, Eco = 148.6;

Rgl gco < E < Strmgtrs = 1591.

Ry: &rs < €.

The critical values of £ separating the four regions
denote (a) &,, turning points of the OPS+ branches;

(b) €0, a supercritical bifurcation point of the OPN=
branches from the IP branch; and (c¢) &,s. Transcritical
bifurcation points involving the OPN+ and the OPS+
branches. The multistability in the four regions involve
the following branches:

R;: IP, OPC+;

R,: IP, OPS+, OPC4;

R3: OPN+, OPS+ OPCx;

R4: OPN4, OPS+, OPC+.

Figure 5 shows that each branch of the OPS+ pair has,
due to the presence of a turning point at £ = &, two
different director structures, characterized by the magni-
tude of |n, center]. Dynamic simulations in R3, R3, and
R, show that the OPS+ solutions with larger |n, center|
are locally stable and that the solutions with smaller
|12 center| are unstable.

The IP and OPNz solutions have been previously
predicted [27], and experimental evidence of this flow-
induced instability involving a transition from the in-
plane to the out-of-plane mode has been detected experi-
mentally [19]. On the other hand, the OPS+ and OPC+
branches are predictions from the LE theory. The OPC+
solution branches are locally stable for all the £ values
studied here and are not connected to any other branch.
This shows that at relatively low £ (£ < &) there is
bistability involving the IP and OPC+ branches; similar
bistability between in-plane and 180° twisted cells are

TABLE II. The orientation structure families at stable steady state for simple shear flow.

Orientation In-shear-plane

dimension 2D orientation 3D 3D
Chirality Achiral Achiral Achiral Chiral
Rotation number (A) 0 0 +1
Orientation 1P OPN+ OPS+ OPC+
structure (In-plane) (twistable) (super-twistable) (cholesteric)
|@|maz(rad) 0 2 T m
v.(y) function Odd Odd Even

1P OPN+ OPS+ OPC+

Three-
dimensional
visualization
of stable
steady

state

orientation

Y |

profile

"
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found in the presence of electromagnetic fields [35]. Using
dynamic simulation we found that for £ > 430, the initial
state is in the basin of attraction of the OPC4 attractors,
indicating that the initial monodomain texture under-
goes a shear-induced transition from an achiral (A = 0)
mode into a chiral mode (A = +1). As shown below,
this transition is irreversible with respect to flow reversal
(U — —U) and to cessation of flow (U = 0). OPC+ so-
lutions of higher rotation numbers (A = +n,n > 1) have
not been found. The rotation number A is an integer due
to the fixed director anchoring. It is found to be inde-
pendent of gap thickness, in accordance with Ericksen’s
scaling [36], which shows that two flow cells with driving
velocities (U) and gap thickness (h), obeying

U, = (Z—j)uz , (21)

display exactly the same scaled orientation and flow
structure; this scaling holds for solutions belonging to
the same branch. The initial efforts to understand the
shear-flow of nonaligning nematics lead to the predictions
of highly distorted in-plane solutions [37-40] and thus
other twisted orientation modes were proposed but never
computed [38]; these proposed textures, which appear
to have been observed experimentally [41], are in qual-
itative agreement with the computed OPC=+ branches
shown here.

The mirror symmetry displayed by the OPN+, OPS+,
and OPC<= branches lead naturally to shear-induced pe-
riodic pattern-formation phenomena. In any unbiased
sample, any of these textures displaying mirror symme-
try are likely to be present in pairs, separated by mediat-
ing walls of in-plane mode; periodic textures produced by
field-induced instabilities are usually present in nematic
polymers [4-8] and flow-induced periodic textures in low
molar mass nematics involving in-plane and out-of-plane
modes have been thoroughly characterized experimen-
tally [42] and theoretically [43,44].

B. Orientation profile evolution

Figure 6(a) shows the centerline (y = h/2) director
evolution as a function of strain v for £=350.2, corre-
sponding to the OPS+ branch; the director components
are shown as 7 center (dashed line), ny center (solid line),
and 7, center (dotted line). After a dead strain v4 ~ 120,
a sharp change takes place. Figure 6(b) shows the corre-
sponding splay (dotted line), twist (solid line), and bend
(dashed line) energies per unit shearing area changing
rapidly in that transition region. Each energy compo-
nent is calculated by integration of Eq. (6). The magni-
tudes and times of sharp changes are scaled with the out-
of-plane orientation transition, during which large splay
and bend distortions occur first, followed by out-of-plane
twist distortions. At long times the twist energy is the
predominant component of the total Frank curvature en-
ergy, as expected for a twisted texture.

Figure 7(a) shows the evolution of the director com-
ponents n, (solid line) and n,(dotted line) as a func-

tion of the strain v, and the scaled thickness H = y/h.
The corresponding visualization of the evolving texture
is shown in Fig. 7(b). The initial director change in-
volves in-plane tilting, while at latter times, combined
tilting and twisting in the center line region results in
a twisted OP steady state solution. At this shear rates,
the time scales for tilting and twisting are similar, so that
after an initial transient, the director’s escape from the
shear plane is concurrent with in-plane tilting. The ori-
entation of the OPS+ branches is characterized by the
presence of twisting and an almost absence of in-plane
tilting, in stark contrast to highly distorted IP plane so-
lutions [37—40]. On the other hand, the orientation of the
OPN<=+ branches differ from that of the OPS+ branches
by the magnitude of the maximum twist angle, which is
always less than m/2 for the former but may be larger
than 7/2 for the latter.

Figure 8(a) shows the centerline director components
Ng center (dashed line), ny center (solid line), and 7, center
(dotted line), as a function of strain <y, for the OPC+
branch at £=466.9. The step and pulse responses oc-
cur at a dead strain 4 =~ 75, which indicates a much
faster response than for the OPN+ case [Fig. 6(a)] at a
lower Ericksen number. The figure shows a rapid swing

(nx,ny,nz)center
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FIG. 6. Centerline director and Frank energy evolutions,
for £=350.2, corresponding to the OPS+ branch. (a) 7 center
(dashed line), 7y center (solid line), and m center (dotted line)
as functions of strain . (b) Frank energy evolutions of the
splay (dotted line) mode, the twist (solid line) mode and the
bend (dashed line) mode per unit shearing area (J/m?) as
functions of strain vy
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of Nz center from +1 to —1, but a small magnitude pulse
in the n, center, indicating that, at the centerline, inplane
tumbling is faster than out-of-plane twisting. Figure 8(b)
shows the corresponding splay (dotted line), twist (solid
line), and bend (dashed line) energies per unit shearing
area. Again the pulse and step responses follow the direc-
tor dynamics, which eventually lead to a predominantly
twist contribution at steady state, as expected for a chiral
nematic.

Figure 9(a) shows the evolution of the correspond-
ing n, (solid line) and n, (dotted line) director com-
ponents as a function of strain v and scaled thickness
H = y/h. The figure shows that n, has an even flat wall
profile but n, has an odd profile with a pair of peaks
close to the boundaries, indicating that the orientation is
inplane at the centerline region but out-of-plane close to
the walls, in agreement with experimental measurement
[19]. Figure 9(b) shows the corresponding visualization of
the achiral to chiral nematic transition. The figure shows
that at the centerline, in-plane tilting is faster than out-
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FIG. 7. (a) Box plots of the director profile evolution
for £=350.2, corresponding to OPS+ branch. mn, profiles
(solid lines) and n, profiles (dotted lines) as functions of
the dimensionless thickness (H = y/h) and strain v. (b)
Three-dimensional visualization of the structure evolution.
Each visualization corresponds to the following strain +:
A=0.0, B=121.8, C=126.0, D=127.9, E=129.9, F=132.0,
G=138.7, H=157.4, and 1=238.46.

of-plane twisting, which eventually leads to a defect-free
nucleation of a chiral texture having a full 27 director
rotation. This orientation texture is similar to that of
a monodomain cholesteric liquid crystal at equilibrium
between two flat plates, whose separation is equal to the
pitch, and can be experimentally detected because of its
distinct optical properties [45-47]. The achiral (A = 0)
to chiral transition (A = +1) involves no singularities
since the two director profiles are topologically equiva-
lent and can be mapped into each other by a nonsingular
transformation.

The instability mechanism can be established by a
torque analysis. The OP twisting and IP tilting viscous
torques due to the primary velocity acting on the director
are, respectively,

V2 avm

Fvy* = “Z "@ sin 2¢sin 260 s (22)
Ovg 2 cos 26 cos ¢

v, = -y -, 23

Iy ( " 2 2

where ¢ and 0 are defined in Fig. 1; the torque axis
y* is orthogonal to n and in the shear plane while the z*

axis is normal to the n-y* plane [27]. A comparison of the
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FIG. 8. (a) Centerline director and Frank energy evolu-
tions, for £=466.9, corresponding to the OPC+ branch; (a)
N center (dashed line), ny center (solid line), and 7. center (dot-
ted line) as functions of strain unit v. (b) Frank energy evo-
lutions of the splay mode (dotted line), the twist mode (solid
line), and the bend mode (dashed line) per unit shearing area
(J/m?), as functions of strain .
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FIG. 9. (a) Box plots of the director profile evolution
for £=466.9, corresponding to the OPC+ branch. n. pro-
files (solid lines) and n. profiles (dotted lines) as functions
of the dimensionless thickness (H = y/h) and strain ~.
(b) Three-dimensional visualizations of the director evolu-
tion for £=466.9. Each director visualization corresponds
to the following strain v: A=72.69, B=76.86, C=78.36,
D=80.20, E=82.18, F=87.37, G=92.78, H=105.9, [=128.7,
and J=252.9.

relative magnitudes of these two torques lead to the iden-
tification of the instability mechanism, since the OPN+
and OPS+ branches are favored when I'V,, « I'’,, at
the center region, while the OPC+ branches are favored
when I'V,, < 'Yy, at the two wall regions. Assuming an
initial in-plane orientation, the extrema of the strengths
of the viscous torques, as the director samples the fourth
quadrant, are a minimum for the IP tilting torque, and
a maximum for the OP twisting torque at § = —7 /4,
which coincides with the compression direction of shear.
At relatively low &£, where the achiral modes are favored,
the director tilting speed is slow and any out-of-plane
fluctuation has time to grow as it enters the compression
region, thus leading to the one way uniformly twisted,
out-of-plane modes (£ must be larger than £, so that
the driving I'?,, torques overcome the stabilizing elastic
torques; see [27]). On the other hand, at relatively higher
£, the tilting speed at the centerline is faster than at the
bounding surface, so that the core tumbles past the com-
pression axes (—7/4) without twisting, but at the two
wall regions the slow tilting allows for a director escape
from the shear plane.

C. Velocity profile evolution
and particle tracking visualization

Figure 10(a) shows the evolution of the primary veloc-
ity (Uz = v /U) profile (solid line) and of the secondary
velocity (U, = v, /U) profile (dotted line) as functions of
dimensionless thickness (H = y/h), for £=350.2, corre-
sponding to the OPS+ mode. For small strains () the
primary velocity profile is linear, but becomes sigmoidal
at larger strains, in agreement with experimentally ob-
served flow visualizations [48]; the nonlinearity reflects
the director’s escape from the shear plane. The figure
shows that the magnitude of the secondary velocity in-
creases at the transition and that the net secondary ve-
locity is zero; U, is an odd function of H.

Figure 10(b) shows the velocity profile evolutions for
the achiral to chiral nematic transition, for £=466.9. The
primary velocity profile (solid line) readily becomes non-
linear at small strains due to the faster IP tilting. There
are two inflection points in the steady state primary ve-
locity profile off the center region, but these two are more
separated than the achiral orientation case. The sec-

FIG. 10. (a) Evolution of the primary velocity (v, = v, /U)
profile (solid line) and the secondary velocity (U, = v,/U)
profile (dotted line) as functions of dimensionless thickness
(H = y/h), for £=350.2, corresponding to the OPS+ branch.
(b) Velocity evolutions for the achiral-chiral nematic transi-
tion, for £=466.9.
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ondary velocity profile (dotted line) undergoes complex
slow oscillation in the transition range and its magnitude
decreases at the steady state. The secondary velocity is
smaller than that of the OPS+ case due to the less overall
out-of-shear-plane orientation. The net secondary flow is
zero.

Particle tracking experiments that show the trajectory
(z(y,t), z(y,t)) of the nematic fluid elements can be vi-
sualized from the dynamic simulation results using the

following equations:

2(y,t) = / oy, ), =(yt) = / v (g, )dt . (24)

where z and z denote the particle Lagrangian coordi-
nates. Figures 11 and 12 show the particle trajecto-
ries corresponding to the OPS+ and OPC+ orientation
texture evolutions for small (weakly nonlinear response)
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FIG. 11. Particle tracking images for £=350.2, correspond-
ing to the OPS+ branch. The size of the circle scales with
the distance from the viewer: the smaller the circle the fur-
ther away it is from the viewer, and vice versa. (a) Small
strain (early time) stage. The maximum upper plate dis-
placement is 2.026 x 102 m; the corresponding strains are
A=0.0, B=5.761, C=19.243, and D=57.89. (b) Large strain
(late time) stage. The maximum upper plate displacement
is 5.228 x 1072 m; the corresponding strains are A=57.89,
B=106.2, C=130.12, and D=149.37.
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and large (nonlinear response) strain stages, respectively.
The radius of the particle represents how far away the
particle is from the observer, which views the shear plane
from the neutral axes (z); the smaller the particle, the
further away it is from the observer, and vice versa. For
the small strain stage, the curve connecting the particles
at the same time shows which is in good agreement with
the experimental observations [48]. As more strains are
applied, the path lines are reminiscent of those experi-
mentally observed when a nematic polymer is subjected
to an orienting magnetic field [19].

In summary we have found that (i) for the OP
modes, the initially linear primary velocity profile be-
comes highly nonlinear at the steady state, (ii) orienta-
tion induces secondary flows whose relative magnitude to
the primary flows are larger for the OPS+ branches than
for OPC= branches, and (iii) particle tracking visualiza-
tions show complex nonlinear path lines.
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FIG. 12. Particle tracking images for £=466.9, corre-
sponding to the OPC+ branch. The size of the circle de-
notes distance from the viewer: the small the circle the
further away it is from the viewer, and vice versa. (a)
Small strains (early time) stage. The maximum upper plate
displacement is 1.726 x 10”2 m; the corresponding strains
are A=0.0, B=5.877, C=35.24, and D=49.32. (b) Large
strains (late time) stage. The maximum upper plate dis-
placement is 3.577 x 10”2 m; the corresponding strains are
A=49.32, B=56.81, C=66.99, D=80.26, E=88.31, F'=94.71,
and G=102.20.
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D. Rheological function evolution

Rheology is a useful tool to characterize and classify
materials [49]. Here we use two characteristic rheolog-
ical functions, the apparent viscosity 7app and the first
normal stress difference N; defined by

Ozy,w
Yn

where 04y,w, 0cz,w, Oyy,w are the wall stresses and 7, is
the nominal shear rate (U/h). Figure 13(a) shows the ap-
parent viscosity (dotted line) and the first normal stress
difference (solid line), as a function of strain, for £=350.2,
corresponding to the OPS+ branch. The apparent vis-
cosity evolution shows one overshoot followed by a slight
undershoot, and the first normal stress evolution shows
two overshoots. The first normal stress response is more
pronounced than the apparent viscosity response, and
this difference is more apparent as £ increases. Figure
13(b) shows the apparent viscosity (dotted line) and the
first normal stress difference (solid line) evolutions for
the achiral-chiral transition, when £=466.9. The appar-
ent viscosity levels off more quickly, after one overshoot.

Napp = ) N1 =022, — Oyyw » (25)

<
N —
S - X
- NS
w
o
& )
£ >
]! 2z
> (=] aN —
B z
]
[=9)
[=%
<
= , o
) 250 500 ©
Y
(b) T
o =
v X
o S
—~ ')
w
<
=3 =
.*é E
ER [n &
> [ [ I
E Z
o
=
[=%
(=9
<
ol =
o e .
S0 150 300 ©

Y

FIG. 13. Characterization of the rheological response to
shear start-up flow. Apparent viscosity n (Pas) (dotted line)
and the first normal stress difference N; (Pa) (solid line) as
functions of strain y. (a) £=350.6, corresponding to the
OPS+ branch; (b) £=466.9, corresponding to the OPC+
branch.

Since the orientation evolution is quicker than that of
the achiral orientation case shown above, the shear stress
response time is accordingly shorter. The first normal
stress shows one peak with a small kink, and this kink
grows as a second overshoot, introducing more oscillatory
behavior with increasing £. Also, we notice a decreasing
viscosity with increasing Ericksen number, which is typ-
ical for shear-thinning fluids.

Comparisons between Figs. 13(a) and 6(a) and be-
tween 13(b) and 8(a) show that the peaks of overshoots
and undershoots of the rheological functions are caused
by the structural changes in the director evolution. The
characteristic changes in the rheological functions do not
scale exactly with the strain since evolutions leading
to the OPS and OPC solutions have different orienta-
tion time constants 7. The orientation time constant
7o = 71h%/K.g depends on the effective Frank elasticity
Keg, which scales with the Frank free energy density; a
comparison between Figs. 6(b) and 8(b) shows that the
7o for the OPS mode is higher that the 79 for the OPC
mode and therefore the strains corresponding the charac-
teristic rheological changes are smaller for the OPC mode
than for the OPS mode.

In summary we have found that (i) shear start-up flow
produces underdamped and large oscillatory rheological
responses such as those experimentally observed for ne-
matic polymers [20,50-54], (ii) as € increases the rheo-
logical responses become faster due to faster orientational
change, and (iii) in contrast to isotropic, viscous, and vis-
coelastic polymeric fluids, nonlinear behavior is predicted
even at low shear rates. For isotropic flexible polymers
nonlinear behavior exists at shear rates several decades
higher than those studied here, since these fluids do not
exhibit any significant structural changes at low shear
rates.

E. Phase stability diagram, multistability,
and basins of attraction

In this section we present the stability diagram, further
identify the parametric regions of solution multistability,
and determine the parametric dependence of the basins
of attractions of the various stable steady state solutions.

Figure 14 shows the stability diagram, given by 2|A|+
Tz center aS a function of the Ericksen number £; the mag-
nitude of revolution number |A| provides the required
classifying index. The ordinate of Figs. 14 and 15 was
chosen such that the set of three-dimensional stability
curves on the (|A|,£,n; center) SPace can be effectively re-
duced, by a projection and translation, to the shown two-
dimensional curves. The upper boundary of the plane
corresponds to chiral (A = +1) solutions, and the plane
itself corresponds to the achiral (A = 0) solutions; the
dash-dotted line represents the OPNZ branches, the dot-
ted line the IP branch, the solid line the OPC4 branches,
and the dashed line the OPS+ branches. The filled ar-
rowheads represents (a) a turning point on the IP branch,
(b) a supercritical bifurcation point between the IP and
OPN= branches, (c) a transcritical bifurcation point be-
tween the OPN+ and OPS= branches, and (d) a turning
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FIG. 14. Stability phase diagram of simple shear flow for
a model nematic polymer (PBG) at steady state. A is the
quantized number of director twist revolutions. The dotted,
dot-dashed, dashed, and solid lines represent the IP, OPN+,
OPS+, and OPC+ orientation structures, respectively. The
filled arrow heads next to the lower case letter (a—d) rep-
resents, for increasing £ values, a turning point of OPS the
branch (d), a supercritical birfurcation point between the IP
and OPN= branches (b), a transcritical branch between the
OPN= and OPS+ branches (c), and a turning point in the
IP branch (a).

point on the OPS+ branch.

The specific values of £ at which bifurcations occur
and the local stability properties of the solutions were
given in Sec. IITA. Given any £ the diagram provides
information on the chirality of the locally stable solu-
tions. The solution multiplicities shown in Fig. 14 and
quoted in Sec. IITA lead to the selection problem of
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coexisting steady state attractors. Each attractors has
a basin of attraction, defined as the subset of initial
data I°(v(0,y),n(0,y)) with the property £(t,I°)—1I, as
t — 400, where I, = (v,(y),n,(y)) are the locally stable
steady states. Here I° is fixed, and we wish to establish
the parametric dependence of the boundaries between
basins with respect to the given I°, that is, which steady
state is adopted when the sample is suddenly driven with
a given value of £. The parametric range of the adopted
steady states, or basin location of I°, obtained from dy-
namic simulations are

(i) 0 < & < &0 = 148.6 (IP mode),

(ii) £co < € < Ens = 300 (OPN+ modes),

(i) &ps < € < &5 = 430 (OPS+ modes),

(iv) e < € (OPC+ modes).
The information is summarized in Fig. 15, which shows
the orientation mode selection diagram when a sample at
rest is driven with a constant £.

F. Irreversality and history dependence
of the stable steady-state structures

In this section we first show the irreversible nature of
the achiral to chiral orientation transition by simulating
relaxation after cessation of flow, and flow reversal. In
the former simulation the upper plate velocity is suddenly
set to zero, and in the latter it is suddenly switched from
+U to —U. Finally, history dependent orientation mode
selections are shown.

Figure 16 shows the three-dimensional visualization of
the structure evolution after stopping the flow. The ori-
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at constant £; A is the quan-
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FIG. 16. Three-dimensional visualizations of the direc-
tor evolutions after cessation of steady shear flow (from
£=466.9 to £=0.0). The corresponding times (sec),
after the cessation of steady flow, are A=8.514x10%
B=4.878 x10%, C=9.072x10%, D=1.673x10*, E=2.478x10*,
F=3.317x10%, G=4.123x10*, H=5.052x10* I=6.663x10*,
and J=1.034x10°.

entation helix relaxes from the nonuniform helix towards
the regular helix, like a regular helical spring, which is
forced to have nonuniform twist. During the relaxation,
the orientation profiles slowly loses symmetry by mov-
ing the initially in-plane orientation wall off the center.
The irreversibility of the chiral orientation is due to the
anisotropy in the Frank elastic constant; Table I shows
that the twist constant K, is significantly smaller than
the splay K;; and bend K33 constants. To restore the
achiral nematic mode, the director must go through large
splay-bend distortions, as shown in Fig. 9(b); transient
simulations show that reversibility to the achiral mode is
only possible for nearly isotropic Frank elasticity. Two
types of shear-flow-induced transitions, reversible and ir-
reversible orientation transitions, have been experimen-
tally observed [55-57], which may suggest that the pre-
dicted transitions shown here can also be detected.

Figure 17 shows the three-dimensional visualization of
the orientation evolution upon flow reversal. Again, the
original achiral nematic structure is not recovered, and
the net result of the reversal is a small adjustment in the
director orientation.
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FIG. 17. Three-dimensional visualizations of director evo-
lutions for flow reversal (from £=466.9 to £=-466.9). The cor-
responding strains «, after the flow reversal, are A = —4.180,
B=1.338x10', C = —2.452 x 10, D = —6.659 x 10,
E = —1.770 x 10>, F = —4.409 x 10%, G = —8.182 x 102,
H = -1.338 x 103, T = —2.900 x 103, and J = —4.357 x 10%.

The dependence of the stable steady states to sample
preparation (strain history) is another evidence of the
nonlinear dynamics exhibited by this system and the in-
validity of the linear superposition principle [58]. Here
we show that three different steady state textures {T;
(¢ = A,B,C)} are obtained from the same initial tex-
ture T'(0), the same final £ = £*, but three different
intermediate deformation histories {&;(v),¢ = 4, B,C}.
Figure 18(a) shows three different sample preparations
leading to three different stable steady state solution
branches for £* = 467: path A, £4 = 467H(v); path
B, £ = 350H(v) + 117H(y — 150); and path C, &c =
233H(7y) + 234H (v — 600), where H(v) is the Heaviside
unit step function. The visualizations of the correspond-
ing stable steady director orientations are shown in Fig.
18(b). The figure shows that even if £* = 467 in all cases,
path A leads to the OPC+ branch, path B to the OPS+
branch, and path C to the OPN+ branch. These obser-
vations confirm the importance of sample preparation in
the study of nonlinear systems.
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FIG. 18. Dependence of the steady orientation mode selec-
tion the Ericksen number history. (a) Three different Er-
icksen number histories [£i(v), ¢ = A, B,C] as a function
of strain, £4 = 467H(vy), £ = 350H(y) + 117H(y — 150),
and £c = 233H(v) + 234H(y — 600); H(v) is the Heaviside
unit step function. (b) Three-dimensional visualizations of
adopted stable steady-state orientation structures. Path A
eventually leads to the chiral orientation structure (OPC+),
path B to the supertwistable orientation structure (OPS+),
and path C to the twisted orientation structure (OPN+).
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IV. CONCLUSIONS

An efficient numerical adaptive method to solve the
Leslie-Ericksen equation for nematics, displaying com-
plex three-dimensional orientation, has been presented
and applied in conjunction with computational bifurca-
tion methods to the transient and steady rectilinear sim-
ple shear flow. The parameter that controls the main
microstructural features and stability properties of the
flow is the Ericksen number. For the range of studied

£ values, seven steady state solutions were found, six of

which are characterized by three-dimensional orientation
(OPS+, OPN+, OPC4); these six solutions are three
pairs of dissipatively equivalent mirror images of each
other. Four solutions (OPS+, OPN=) are characterized
by one-way twist deformations, while the two OPC+
branches are chiral nematics, displaying one full direc-
tor rotation when going from one surface to the other.
All the seven solutions are attainable by different appro-
priate shearing histories of the some initial monodomain
orientation. The characterized nonlinear phenomena in-
clude supercritical and transcritical bifurcations, turning
points, multistability, nonlinear strains, secondary flows.
non-Newtonian rheology, and strong history dependence
of stable steady state textures. Bifurcations in the pres-
ence of symmetry give rise to left or right twisted achiral
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solutions and left or right handed chiral solutions. Both
solutions in each pair are dissipatively equivalent and
both should therefore be observed in an unbiased flow
cell. Thus the bifurcation in the presence of symmetry
shown here naturally leads to typical periodic textures
consisting of alternating (+) or (—) out-of-plane modes
separated by mediating walls of in-plane solutions.
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APPENDIX: THE LINEAR MOMENTUM
AND TORQUE BALANCES

The full Leslie-Ericksen equations with orientation
structure embedded torque balance equations for simple
shear flow is obtained using the symbolic manipulation
programming language MATHEMATICA [32]. There is no
body force and only the gradients along the thickness
direction are considered.

1. z-momentum balance

Ovg anz dnz Bny On, Ony Ny
— — Ny ——— - 3Ny
Por ~“™aay oy ot ot o 3" 519
on 2 . 19} v,
- ( 3; (@3ng + agng + 200m.ny) + [—(azny) + asny, + 2a1niny]§;> n
5 o 0%,
+(ag/2 + azn?/2 + agn? /2 — azn, 2/2 + asn, 2/2 + ajnin ) a7
on, Ny ) . 9 2 0N\ Ovu,
+<2a1nzny—8;nz + By (a3n./2 + agn. /2 + ainyn.) + (azng /2 + agne /2 + aingn, 2) By ) ay
, 0%, 1
+(azngn. /2 + agngn. /2 + arngnyn.) g7 (A1)
2. z-momentum balance
Ov, any 8ny on, _ Bny anz ~aom %n,
Por P oy T Yoy ot ot oy Yotdy
on ong ) on, \ Ov,
= (Zanwny*B—yﬂnz + By (asn./2 + agn./2 + aln:nz) + (a3ne /2 + agng /2 + ayngn ) By )
8%v, on
+(agngn, /2 + agnen, /2 + alnznznz)g;% + (—éj’{—(azny) + asny + Zalnyng]
on, \ Ov, 0?%v,
+(asn, + agn, + 2a1n§nz) By > 3y + (aa/2 — azny/2 + asn /2 + azn?/2 + agn?/2 + a1n2 2) 3

(A2)
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3. gi-torque balance

on, Bny

ong, . .
—t[_(nlgly) + ny9;, )]

— 32ny * * a * 6 *
—Klla—yz—[_(nzglz) +n2g1z] T 71| NeNz 5~ a gl:c/2+ny 8 glz/ +nz a /2

Ov, ov Ov vz Ov,
+nynz‘8?gly/2_nzny angy/ 2 — ;z 2- 2 * /2 Mgz —o— 6 glz/ )

ove , v, a v, . a ov, v, .
+72 (nznz ay y a z 6 gla:/2 NyNz o~ (9 gly/2+n¢ny a gly/ 2 az
ov, On, On .

+n — NgNz (7 dy glz/2) + K33( ayy ayz (2nyglz - znznygly)

an . . g’ .
+ aygz (nzglz - niﬂnigly) + a—; (ny"zgla.- - nwnygfz)

6n 2 * * n 2 * *
+a—yz (nyn=g1, — nanygy,) + 8—; [~ (nyn.g1s) + nenygy,]

Ong Ony

(2nyn.g5, — 2nlg1,)

aya—y

8*n 8n, .
+ 6y2y [‘(”znzgfz) +n1n32/g;z] + 55 (9 2 (n’znzgly zglz))

on, n,? . .
+K22 (8— (—2nyn.g1, + 2nen z!hy) + B_y (—2nzn291y + 2nenygy,)
Ong On, . . . .
ay ay (2n$nyglzt - 2n:gly + 2nzgly - 2nynzglz)
azn * * *
+ 8yzz (ninyglw - ni.‘hy - nznﬁyly + nanyn.gy,)
0%n,

+

ayz [—(nwnynngm) + ninzg;y + ngeg - nynzg;z]) .

4. g2-torque balance

[~ (52 = (I + maiy 4 s = mesi)

anz * * * *
— S {~a(nagis = magia)] + myl—(nagi,) + mygi])

6n * *
2p (el (ny81.) + nagly] — na[—(n.g,) + nygi.]}

82 . . . . ov, v, va .

Ku 3y2y [—(nenygi.) + nigly + nfgly - ny"zglz] + 72 (nazcnya—glzﬂ - 3 v By - 91:/2 - * By - 912/2
v, , 30U, Ov, v,

+nznynza—y'glm — N, amgly/z-'"nz y 8 gly/2 2 gly/2 ’l’l 2Tz ay gly/2+n nz a gly/2

dv, v A, 500,

z a gly/2+nmnynz a;glz _niny 8 glz/ y 8 glz/2+n’y )
Ov, v, 20V, vw . Ovg

+'Yl (nzny a glz/ +n 3 a glz/2+ny n, 6 glz 2- 3 /2 gly/2 Igly/z

Bv, - (9 * 8 8 6 az *
‘n2nza gly/2 nnza gly/2 a /2+nnya glz/2+n 6 glz/2+ny za glz/2)

on, On
+K33 (35 6; (—2nznyn.g7, — 2”32,"29;3, + 2ninygfz + 2nZgIz)

8n
+ 6ygz [“(nlnznlgiz) - n;nzg;y + n nyglz + nyglz]
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n
2 _* 2 * 2 _x 2 * z 4 x 2 2 x 3 x 2 *
(n’inyglz T NNyG1y — NyNz g1y + nynzglz) + 8:1}2 (nyglm + Ny, 912 — NaNygiy — nznynzglz)

ong On R . .
8:; ayy (znzglw + 2nyn§glz - 2nzn§g){y - 2nznynzg1z)
8ny ’ 2 _x 2 * 2 % 2 * ]

+ ay [—(nﬂ!nyglz) + nznygly + nynzgly - nynzglzJ
Ong 2 % 2 * 2 % 2. o«

+ A2 (nwnyglz T NgNyG1y — MyM 91y + nynzglz)

n,

+
Oy?
9%ny 3 x 22 % 2.2 x 3 %

+ Byz [—(nwnyglm) + nznygly + nynzgly - nynzglz]

an N .
+ 8:; (anngg;z + Z“ynigiy - 2n§nzglz - 2nznzglz) +
—4ngnyn. gy, + 2n3g7. + 2n2n§gfz — 2n,n’g})

0%n, 3

‘ay2
+62n1( 2,2 =« 2,2 %
Oy?

anz * * * *
Ko (G (~2namit, — 2o, + 2nng, + 2ikn.gi.)
2

* 2 * 3 x 4 x
[_( wnzgln:) T NeNyNzGy1, — NzNy 01, + P

dy Oy

2,2 % 22*}

+ nwnyglz + NeN.912

4 * 3 * 2 * 3 *
NzN2912 + nyn 91z T N.G91. — NeN2G1. — NgNyNzGy, — nwanlz)) : (A4)
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